Journal of Chromatography, 115 (1975) 161-175 © Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands

CHROM. 8565

GAS-LIQUID CHROMATOGRAPHIC STUDIES OF REACTIONS AND STRUCTURAL RELATIONSHIPS OF STEROIDS

IV. SUBSTITUTION IN THE PREGNANE SIDE-CHAIN*

FRANTZ A. VANDENHEUVEL

Animal Research Institute. Research Branch, Canada Department of Agriculture, Ottawa, Ontario KIA 0C6 (Canada)

(Received June 24th, 1975)

SUMMARY

Qualitative and quantitative effects of classical reactions on steroids observed by gas-liquid chromatography (GLC) under standardized conditions, including the double internal standard technique are reported. Simple procedures applicable to nanogram amounts of reactants are described. Reactions studied include the conversion of keto groups to hydroxyl groups by NaBH₄, and to dioxolone derivatives by 1,2-diethanol; 17α -hydroxylation of C20-ketosteroids; the conversion of hydroxyl groups to trimethylsilyl (TMS) ethers by hexamethyldisilazane; the hydrolysis of dioxolone and TMS derivatives by H⁺. Effects of the Wolff-Kishner reagents, and CrO₃ were also studied. GLC chromatograms of reaction mixtures of single- and multistep reactions readily provide information on effects on functional groups at positions 3, 17, 20, and 21 in the pregnane series, and the retention times of many steroids unavailable from commercial and other sources. GLC data analysis provides relationships between steroid structure and retention time from which methods for the computation of retention times and for steroid identification are designed. The accuracy of the computation methods is demonstrated.

INTRODUCTION

The fourth of a series of communications¹⁻³ dealing with reactions and structurally dependent chromatographic properties of steroids, the present article concerns groups of steroids substituted in the pregnane side-chain. These compounds, which feature a 20-keto or a 20α - or 20β -hydroxyl group alone or in conjunction with a 17α - or 21-hydroxyl group. or both, include hormones and metabolites of considerable importance to studies of animal reproduction.

As the present data show, steroids of these groups are essentially G_R -normal^{1,2}, *i.e.*, their G_R value defined as

$$G_R = L_R - M_R$$

(eqn. 9 in ref. 1)

* Contribution No. 582 of the Animal Research Institute.

TABLE I

MR VALUES AND SOURCES OF M-STEROIDS OF THE PREGNANE SERIES"

Steroid			Source
M	Abbreviation	M _R	
ĩ	5βP	2113 -	P5700
Ħ	5aP	2150	P1800 .
ш	5 <i>8</i> P3 <i>6</i>	2402	Prepared; WK-5 β P3 β (20)
IV	5aP3a	2401	. Calculated; $M_R 5\alpha A 3\alpha^{**} + 226^{***} = 2401$
v	5∂P(3)	2412	Calculated; $M_R 5\beta A(3)^{**} - 226^{***} = 2412$
VI	$5\beta P3\alpha$	2421	P7800
AΠ	5aP(3)	2453	P4200
VIII	Δ 4 P 3β	2483	Calculated; $M_R 4A3\beta^{**} + 226^{***} = 2483$
IX	_15P3B	2497	Q5350
X	5αP3β	2506	P3450
XI	⊿4P(3)	2531	Calculated; $M_R \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

* Cf. ref. 1, Table II, and ref. 2, Table IV. ** For M_R values, cf. ref. 1, Table I.

*** Cf. ref. 1, eqn. 17.

is a constant characteristic of the group. Hence their L_R value, defined by

 $L_{\rm R} = 10^3 \times \log t'_{\rm NR}$ (eqn. 6 in ref. 1)^{*} and, consequently, their retention time t'_{NR} under standardized conditions¹ is readily obtained by

 $L_R = M_S + G_R$

(eqn. 8 in ref. 1)

with M_R taken from Table I.

One purpose of the present article is to show that for M-corresponding steroids¹ of two groups, a and b, the general relationship

 $L_{\mathcal{B}}(\mathbf{a}) = L_{\mathcal{B}}(\mathbf{b}) + \Delta G_{\mathbf{s}}(\mathbf{a},\mathbf{b})$ (eqn. 15 in ref. 1) holds. Hence, $L_R(a)$, the L_R value of any steroid in one group, can be accurately calculated from $L_{\kappa}(b)$, the L_{κ} value of the *M*-corresponding steroid in another group, and the $\Delta G_{R}(a,b)$ value of the group pair. Simple methods for obtaining the G_{R} and $\Delta G_{\rm R}$ values given in Table XIV have been described¹.

Detailed definitions of other symbols and abbreviations used in the present article are found in ref. 1.

The gas-liquid chromatographic (GLC) properties of steroids of groups P(20), P203, P20a, P17a(20), P17a203, P17a20a, P21(20), P20321, P20a21, P17a20321 and P17a20a21, listed in Tables III-XIII, respectively, were obtained with trimethylsilyl ethers (TMS) of commercially available standards**, gifts from the Steroid Reference Collection***, or steroids synthesized in this laboratory.

Although most of the synthesized compounds were obtained through conversion of keto groups to hydroxyl groups by NaBH₄ (RD reaction) (Table II) and substitution of P(20)-ster oldsby 17α -hydroxvl (Diagrams 1-3), effects of various other

^{*} The L_R value shown here is defined in ref. 1 as the logarithmic expression of t'_{NR} and as such should include the log sign as shown above. Unfortunately, this sign was left out from eqns. 6 and 7 in ref. 1.

^{**} In the tables, under Source, a letter followed by four digits indicates catalogue number of Steraloids Inc., P.O. Box 127, Pawling, N.Y. 12564, U.S.A.

[&]quot;" Indicated by SRC under Source in the tables; see Acknowledgements.

FABLE II

LEDUCTION BY NaBH (2 h) OF 20-KETONES

Starting material

Starting materia			Normal products*		
1bbreviation	Source	GLC properties	20α/20β ratio	GLC properties	
βP17α(20) aP17α(20) βP3β17a(20) βP17α(3,20) βP3a17a(20) ·5P3β17a(20) ·cP3β17a(20) ·dP3β17a(20) ·dP3β17a(20)	<i>Cf.</i> Diagram I, A <i>Cf.</i> Diagram I, B P6810; <i>cf.</i> Diagram 2, A P8090 P6570; <i>cf.</i> Diagram 2, B <i>Cf.</i> Diagram 3, B P2490; <i>cf.</i> Diagram 3, A Q3360		36/64 36/64 36/64 40/60 36/64 38/62 36/64 40/60	Cf. Tables VII(β) and VIII(α)	
$5\beta P21(3,20)$ $5\beta P3\alpha 21(20)$ $5\alpha P21(3,20)$ $.15P3\beta 21(20)$.14P21(3,20)	P8120 P6920, SRC P3750 P4780, SRC Q3460	<i>Cf</i> . Table IX (P2I(20) group)	<i>Cf.</i> Text 13/87 15/85 15/85 17/83	Cf. Tables $X(\beta)$ and $XI(\alpha)$	
5βP17α21(20) 5βP17α21(3,20) 5αP17α21(3,20) Δ14P17α21(3,20)	SRC P6300 P2320 Q1610	Decomposes (P17a21(20) group)	24/76 Cf. text 23/77 19/81	Cf. Tables XII(β) and XIII(α)	

* While the RD reduction of (20) invariably produces both 20α and 20β isomers, that of (3) yields almost exclusively 3α with a 5β compound and 3β with a 5α compound. Minor products are discussed in the text.

reactions previously described^{1,2} have been studied at the submicrogram level. The results are discussed with regard to possible uses of these reactions in steroid identification.

EXPERIMENTAL

Reactions

Procedures used for the reduction of keto groups by sodium borohydride (RD), their reductive removal by the Wolff-Kishner reaction (WK), their formation from hydroxyl groups by oxidation using chromium trioxide (OX), the TMS derivatization of hydroxyl groups, and the hydrolysis of TMS and dioxolone derivatives have been described in detail^t.

The procedure described¹ for the preparation of dioxolone (DO) derivatives of ketones was modified: only 0.1 mg of p-toluenesulfonic acid (PTSA) was used, and the reaction time extended to 7 h, with hourly addition of toluene (see Discussion).

The procedure used for the 17α -substitution of P(20)-steroids included three steps (cf. Fig. 1).

Step I (Ac₂O/PTSA)

From 0 to 1 mg of steroid placed in a 1-ml tube was dissolved in 100 μ l of a solution of *p*-toluenesulfonic acid in acetic anhydride (0.6 g PTSA in 50 ml Ac₂O). The tube was placed in the stainless-steel pressure vessel described in ref. 1 p. 77, together with a 5-ml vial containing 4 ml Ac₂O. The vessel was filled with nitrogen, closed (*cf.* ref. 1, p. 78), placed in an oven, heated to 142° for 4 h, and allowed to cool

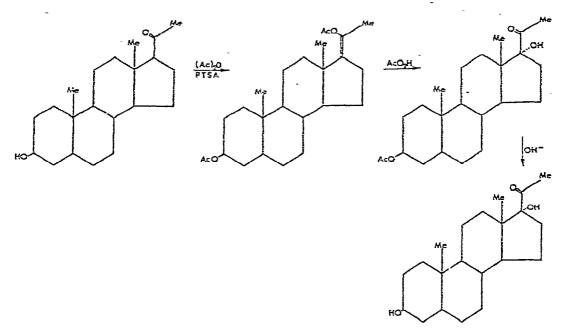


Fig. 1. Introduction of the 17 α -hydroxyl group in 20-ketosteroids by the method of Kritchevsky and Gallagher⁴ as modified by Oliveto and Hershberg⁵.

to room temperature. The Ac₂O was removed from the reaction mixture under vacuum, and 350 μ l of benzene were stirred with the residue. The solution was washed by stirring with 350 μ l of water. Most of the solvent was evaporated under nitrogen (56°), and the residue dried over P₂O₅ under vacuum for 2 h.

Step 2 (AcO_2H)

One hundred microliters of a solution of peracetic acid in benzene (5 ml

TABLE III

VALUES OF L_R AND G_R , A	ND SOURCES OF STEROIDS	OF	GROUP P	(20)
-------------------------------	------------------------	----	---------	------

Stero	iđ			Saurce	
M	Abbreviation	t' _{NR}	L _R	G _R	
I	5βP(20)	221	2344	231	SRC
н	5aP(20)	242	2384	234	SRC
ш	5βP3β(20)	435	2638	235	P8180
IV	5aP3a(20)	434	2637	235	Calculated: $M_R 5\alpha P3\alpha^{**} - 234^*$
v	5βP(3,20)	439	2643	23 E	P7150
VI	55P3c(20)	455	2658	237	P8150
VΠ	5aP(3,20)	490	2690	237	P2750
VIII	⊿4P3¢(20)	521	2717	234	Calculated; $M_R \ 14P3\beta^{**} + 234^{*}$
IX	Δ5P3β(20)	535	2728	231	Q5500
\mathbf{x}	5aP3\$(20)	554	2743	233	P3830
XI	.14P(3,20)	582	2765	233	Q2600

* Average G_R -normal = $G_R P(20) = 234$.

** For M_R value, cf. Table I.

TABLE IV

VALUES OF L_R AND G_R , AND SOURCES OF STEROIDS OF GROUP P20 β

Stero	id			Saurce	
M	Abbreviation	t' _{NR}	L _R	G _R *	
I	5βΡ20β	290	2463	350	Prepared; RD (2 h)*** 53P(20)
п	5αP20β	317	2502	352	SRC
III	5βΡ3β20β	566	2753	353	P6140
IV	5aP3a20β	573	2758	354	P2000
v	5βΡ20β(3)	572	2757	345**	SRC
VΙ	5βΡ3α20β	585	2767	346**	P6050
VII	$5\alpha P20\beta(3)$	642	2807	354	P4000
VIII	-14P3β20β	686	2836	353	O1490
IX	Δ5P3β20β	709	2851	354	O4490
х	5αP3β20β	728	2862	356	P2100
XI	⊿14P20β(3)	773	2888	357	Q3630

* Average G_R -normal = G_R P20 β = 353.5.

** G_{R} -odd steroid.

*** Cf. ref. 2, Table I.

¹ Cf. Table III.

 $AcO_2H + 25 \text{ ml } C_6H_6$) were stirred with the enol acetate and the stoppered tube left at room temperature for 2.5 h. Thirty microliters of Na₂SO₃ solution (40 g Na₂SO₃ + 150 ml water) and 200 μ l C₆H₆ were stirred with the reaction mixture. After adding 300 μ l water, stirring and centrifuging, the benzene layer was removed and washed twice with 300 μ l of water. The solvent was evaporated under nitrogen (56°).

Step 3 (OH^{-})

Saponification of the residue was achieved by heating (56°) for 30 min with 100 al of methanolic NaOH (1 g NaOH, 10 ml water, 90 ml methanol), evaporating

TABLE V

VALUES OF Lg AND Gg, AND SOURCES OF STEROIDS OF GROUP P20a

Stero	id			Source	
М	Abbreviation	t' _{NR}	Ĺ _R	G_R^*	-
I	5BP20a	311	2493	380	Prepared: RD (2 h)**5βP(20)***
II	5aP20a	338	2529	379	SRC
ш	5βP3β20α	606	2782	380	P6100
IV	5aP3a20a	611	2786	384	P1950
v	5βP20α(3)	617	2790	378	SRC
VI	5βP3α20c	634	2802	381	P6000
VΠ	5aP20a(3)	681	2833	380	SRC
VIII	∠14P3β20α	725	2860	377	Prepared; RD (2 h)** _14P(3,20)***
IX	∠15P3β20a	748	2874	377	Q4460
Х	5αP3β20α	770	2886	380	P2050
XI	$\Delta 4P20a(3)$	820	2913	382	Q3600

UR F20p g-normal =200.

Cf. ref. 2, Table I.

"" Cf, Table III.

TABLE VI

VALUES OF L_R AND G_R , AND SOURCES OF STEROIDS OF GROUP P17 α (20)

Stero	Steroid				Source ⁻
M	Abbreviation	L'NR	L _R	G_{R}^{*}	-
Ţ	58P17c(20)	317	2501	388	Prepared; cf. Diagram i, A
Į	SaP17a(20)	350	2544	394	Prepared; cf. Diagram 1, B
III	5βΡ3β17α(20)	607	2783	381**	P6810; prepared: cf. Diagram 2, A
١V	5aF3a17a(20)	617	2790	389	Calculated; L_R 5aP3a(20)*** + ΔG_R *
v	56P17a(3,20)	629	2798	386	P8090
VI	53P3a17a(20)	618	2791	370**	P6570; prepared; cf. Diagram 2, B
VII	$5\alpha P17\alpha(3,20)$	696	2842	389	Calculated; $L_R 5\alpha P(3,20)^{***} - \Delta G_R^4$
VIII	.14P3\$17a(20)	746	2872	389	Calculated: $L_R \ 14P3\beta(20)^{***} + \Delta G_R^{\dagger}$
IX	.45P3β17α(20)	770	2886	389	Calculated; $L_R \Delta SP3\beta(20)^{***} + \Delta G_R^{\sharp}$
X	$5\alpha P3\beta 17\alpha(20)$	790	2897	391	P2490; prepared; cf. Diagram 3, A
XI	/14P17a(3,20)	859	2934	403	Q3360

* Average G_R -normal value = G_R P17a(20) = 389.

"" G_R-odd steroid.

*** For L_R value, see Table III.

• For $\varDelta G_R$ value, see Table XIV.

under nitrogen (56°), stirring the residue with 500 μ l CHCl₃, removing the extract, evaporating most of the CHCl₃ under nitrogen (56°), and drying over P₂O₅ in vacuo.

Gas-liquid and thin-layer chromatography

Both gas-liquid and thin-layer chromatographic (TLC) methods were used as previously described^{1,2}. All t'_{NR} values were obtained with steroids or steroid mixtures submitted to the TMS derivatization procedure.

TABLE VII

VALUES OF L_8 AND G_R , AND SOURCES OF STEROIDS OF GROUP P17 α 20 β

Stero	iđ			Source	
M	Abbreviation	t' _{NR}	L_R	G _R [*]	
I	5βΡ17α20β	438	2641	526	Prepared; cf. Table II
iI	5aP17a20p	475	2677	527	Prepared; cf. Table II
ш	5βΡ3β17α20β	837	2923	521**	Prepareci; cf. Table II
IV	5aP3a17a20p	861	2935	534	P5000
v	5βΡ17α20β(3)	855	2932	520**	Calculated; $L_{R} 5\beta P20\beta(3)^{***} + \Box G_{R}^{*}$
VI	5βP3α17α20β	853	2931	510**	P9480; prepared; cf. Table II
VII	$5\alpha P17\alpha 20\beta(3)$	960	2982	529	Calculated; $L_{R} 5\alpha P20\beta(3)^{***} + \Delta G_{R}^{*}$
VIII	_14P3β17α20,3	1024	3010	527	Prepared; cf. Table II
IX	.15P3β17α20β	1057	3024	527	Q5890 ¹¹ ; prepared; cf. Table II
X	5αΡ3β17α20β	1089	3037	531	Prepared: cf. Table II
XI	_14P17a208(3)	1154	3062	532	Q1850

* Average G_R -normal value = G_R P17a20 β = 530.

** GR-odd steroid.

*** For L_R value, see Table IV.

¹ For JG_R value, see Table XIV.

TABLE VIII

VALUES OF LR AND GR, AND SOURCES OF STEROIDS OF GROUP PI7a20a

Steroid					Source
M	Abbreviation	t' _{NR}	L _R	G _R *	
I II IV VIII IV VIII IV VIII IX X	5βP17a20a 5aP17a20a 5βP3β17a20a 5aP3a17a20a 5βP17a20a(3) 5βP3a17a20a 5aP17a20a(3) Δ4P3β17a20a Δ5P3β17a20a 5aP3β17a20a	463 503 904 910 921 939 1012 1079 1116 1150	2666 2702 2956 2959 2964 2973 3005 3033 3048 3060	552 552 554 552 552 552 552 552 552 551 551 554	Prepared; cf. Table II Prepared; cf. Table II Prepared; cf. Table II Prepared; cf. Table II P4950 Calculated; $L_R 5\beta P20\alpha(3)^{**} + \Delta G_R^{***}$ P9450; prepared; cf. Table II Calculated; $L_R 5\alpha P20\alpha(3) + \Delta G_R^{***}$ Prepared; cf. Table II SRC: prepared: cf. Table II Prepared; cf. Table II Prepared; cf. Table II
XI	⊿4P17α20α(3)	1226	3088	557	Q1820

* Average G_R -normal value = G_R P17 $\alpha 20\alpha$ = 554.

** For L_R value, see Table V.

*** For ΔG_R value, see Table XIV.

DISCUSSION

Reactions

RD. Reduction by NaBH₄ always produced both the 20β - and 20α -isomers as major products (Table II) in proportions characteristic of the group involved. Assignments for GLC peaks of reduction products could be made readily since a number of standard 20α - and/or 20β -isomers were available in all groups (*cf.* Tables III-XIII). The $20\alpha/20\beta$ ratio of the products was highest (average: 37/63) with P17 α (20)-steroids as starting materials, lowest (average: 15/85) with P21(20)- and

TABLE IX

VALUES OF L_R AND G_R , AND SOURCES OF STEROIDS OF GROUP P21(20)

Stero	iđ			Source	
М	Abbreviation	ť' _{NR}	L _R	G _R *	_
I	5BP21(20)	498	2698	585	Calculated: $L_R 5\beta P(20)^{***} + \Delta G_R^{\$}$
II	5aP21(20)	547	2738	588	Calculated; $L_R 5\alpha P(20)^{***} + \Box G_R^{t}$
III	5βP3β21(20)	982	2992	590	Calculated; $L_R 5\beta P3\beta(20)^{***} + \Box G_R^*$
IV	$5\alpha P_{3\alpha 21(20)}$	980	299 E	590	Calculated; $L_R 5\alpha P3\alpha(20)^{***} + \Box G_R^{*}$
v	58P21(3.20)	958	2981	569**	P8120
VI	58P3a21(20)	953	2979	558**	P6920 and SRC
VП	5aP21(3,20)	1103	3042	589	P3750
VIII	∠14P3B21(20)	1178	3071	588	Calculated; $L_R \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
IX	△5P3821(20)	1221	3086	589	P4780 and SRC
x	$5\alpha P3\beta 21(20)$	1247	3096	590	Calculated; $L_R 5\alpha P3\beta(20)^{***} + \Box G_R^{*}$
XI	⊿4P21(3,20)	-	Decor	mposes	Q3460

* Average G_R -normal value = G_R P21(20) = 589.

** G_R -odd steroid.

** For $L_{\mathcal{R}}$ value, see Table III.

^f For $\varDelta G_R$ value, see Table XIV.

TABLE X

VALUES OF L_{π} AND G_{e} , AND SOURCES OF STEROIDS OF GROUP P20321

Stero	id .			Source	
M	Abbreviation	t'NR	LR	G _R *	_
I	5 <i>β</i> P20 <i>β</i> 21	617	2790	677	Calculated; $L_{\mathbb{R}}$ 5\$P20 $\beta^{***} + \Delta G_{\mathbb{R}}^{i}$
н	5aP20321	672	2827	677	SRC
ш	58P3820821	1203	3080	678	Calculated; $L_R 5\beta P3\beta 20\beta^{***} + \Delta G_R^*$
IV	5aP3a20821	1217	3085	684	Calculated; L_R 5aP3a20 $\beta^{***} + \Delta G_R^{\dagger}$
V	58P20821(3)	1214	3084	672**	Calculated; $L_R 5\beta P20\beta(3)^{***} + \Delta G_R^4$
VI	5βF3α20β21	1203	3080	659**	Prepared: cf. Table II
VII	$5\alpha P20\beta 21(3)$	1361	3134	681	Calculated; L_R 5aP20 $\beta(3)^{***} + \Delta G_R^4$
VIII	.14P3\$20\$21	1460	3164	682	Prepared: cf. Table II
IX	-15P3β20β21	1507	3178	681	Prepared; cf. Table II
X	5aP3620621	1550	3190	684	Prepared; cf. Table II
XI	_14P20521(3)	1640	3215	684	Q1970

* Average G_R -Lormal value = $G_R P20\beta 21 = 681$.

" GR-odd steroid.

*** For L_R value, see Table IV.

⁴ For $\varDelta G_R$ value, see Table XIV.

intermediate (average: 22/78) with P17 α 21(20)-compounds. On the other hand, retention times were higher for P17 α 20 α - than for P17 α 20 β -isomers (cf. Tables VII and VIII) as indeed they were for P20 α -isomers (cf. Tables IV and V), while those of P20 α 21 and P17 α 20 α 21 were shorter than those of their 20 β -counterparts (cf. Tables X and XI, and Tables XII and XIII). In contrast to previous observations^{2.3} on the TLC behaviour of other 20 α - and 20 β -isomers, P17 α 20 β - and P17 α 20 β 21-steroids migrated faster in the present TLC system, *i.e.*, were less polar, than their 20 α counterparts.

TABLE XI

VALUES OF LR AND GR, AND SOURCES OF STEROIDS OF GROUP P20c21

Stero	iđ			Source	
M	Abbreviation	t' _{NR}	L _R	G _R *	
ĩ	5βΡ20α21	592	2772	659	Calculated; L_{R} 5 β P20 α^{***} + $\Box G_{R}$ ⁵
п	5aP20a21	638	2805	655	SRC
Πī	5ßP3ß20a21	1151	3051	659	Calculated; $L_R 5\beta P3\beta 20\alpha^{***} + \Delta G_R^{5}$
IV	5aP3a20a21	1162	3065	664	Calculated; $L_{\rm R}$ SaP3a20a ^{***} + $\Delta G_{\rm R}$ [*]
V	5βP20c21(3)	1173	3069	657	Calculated; $L_R 5\beta P20\alpha(3)^{***} + 4G_R^{**}$
٧I	5\$P3a20a21	1203	3080	659	Prepared; cf. Table II
٧II	5aP20a21(3)	1295	3112	659	Calculated; L_8 5aP20a(3)*** + ΔG_8
VIII	Δ4P3β20a21	1376	3139	656	Prepared: cf. Table II
IX	$J5P3\beta20a21$	1431	3156	659	Prepared; cf. Table II
х	5aP3\$20a21	1465	3166	660 -	Prepared; cf. Table II
XI	44P20a21(3)	1556	3192	661	Calculated; $L_R \Delta 4P20a(3)^{***} + \Delta G_R^{***}$

⁵ Average G_R -normal value = G_R P20a21 = 658.

" G_R-odd steroid.

^{**} For L_R value, see Table V.

• For $\perp G_R$ value, see Table XIV.

TABLE XII

VALUES OF LR AND GR. AND SOURCES OF STEROIDS OF GROUP P17a20β21

Stero	id				Source
М	Abbreviation	ť _{NR}	L_R	G_R^*	
I II	5βΡ17α20β21 5αΡ17α20β21	890 963	2949 2984	836 834	Prepared; cf. Table II SRC
ш	5βΡ3β17α20β21	1702	3231	829**	Calculated; L_R 5 β P3 β 17 α 20 $\beta^{***} + \Delta G_R^*$
IV V	5aP3a17a20β21 5βP17a20β21(3)	1741 1738	3241 3240	840 828**	Calculated: L_R 5 α P3 α 17 α 20 $\beta^{***} - \Delta G_R^{*}$ Calculated: L_R 5 β P17 α 20 β (3)*** + ΔG_R^{*}
VI	5βΡ3α17α20β21	1728	3237	816**	Prepared; cf. Table II
ШV ШV	5αP17α20β21(3) ∠14P3β17α20β21	1951 2079	3290 3318	837 833	Calculated: L_R 5 α P17 α 20 β (3)*** + ΔG_R ⁶ SRC; Prepared; cf. Table II
IX	⊿5P3β17a20β21	2150	3332	835	Calculated; $L_R \pm 5P3\beta 17a 20\beta^{***} \pm \pm 1G_R^{\epsilon}$
X XI	5aP3β17a20β21 14P17a20β21(3)	2220 2346	3346 3370	840 839	Prepared cf. Table II Calculated; $L_R \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

* Average G_R -normal value = G_R P17a20 β 21 = 836.

** G_R -odd steroid.

** For L_R value, see Table VII.

⁴ For $\triangle G_R$ value, see Table XIV.

In short, the 17α - and 21-hydroxyl groups had opposite effects on the low $20\alpha/20\beta$ ratio of products in the RD reduction of (20). In addition, the polarity of the 20 α - vs. the 20 β -isomer was higher in the presence of 17 α , and its retention time was shorter in the presence of 21-hydroxyl.

DO. Steroids of groups $P17\alpha(20)$, P21(20), and $17\alpha 21(20)$ reacted abnormally in the presence of a large excess of PTSA catalyst such as was used in previously described dioxolone syntheses (cf. refs. 1-3). GLC analysis of the reaction mixtures indicated the formation of thermally unstable products leading to very numerous compounds both of high and low molecular weight, which included little or none of

TABLE XIII

VALUES OF LR AND GR, AND SOURCES OF STEROIDS OF GROUP P17a20a21

Stero	id				Source
M	Abbreviation	f' _{NR}	L _R	G_R^*	
I	5BP17a20a21	846	2927	814	Prepared; cf. Table II
II	5aP17a20a21	924	2965	815	SRC
III	58P3817a20a21	1651	3217	815	Calculated; $L_R 5\beta P3\beta 17\alpha 20\alpha^{***} + \Delta G_R^{***}$
IV	5aP3a17a20a21	1660	3220	819	Calculated: L_R 5aP3a17a20a ^{**} + ΔG_R
v	$5\beta P17\alpha 20\alpha 21(3)$	1680	3225	815	Calculated; $L_R 5\beta P17\alpha 20\alpha(3)^{**} + 4G_R^{***}$
VI	58P3a17a20a21	1728	3236	815	Prepared; cf. Table II
VII	5aP17a20a21(3)	1845	3266	813	Calculated; L_R 5aP17a20a(3)** + $\Box G_R$ ***
VШ	214P3β17α20α21	1980	3297	814	Prepared; cf. Table II
IX	15P3β17α20α21	2041	3310	813	SRC
X	5aP3\$17a20a21	2094	3321	815	Prepared; cf. Table II
XI	$44P17\alpha 20\alpha 21(3)$	2235	3349	818	Calculated; $L_R \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

* Average G_R -normal value = G_R P17 α 20 α 21 = 815. ** For L_R value, see Table VIII.

*** For ΔG_R value, see Table XIV.

the expected DO derivatives. Lowering the amount of PTSA to 0.1 mg considerably minimized this effect and led to at least 80% yields of expected dioxolones; the balance consisted mostly of unreacted material.

Shifts of L_R values resulting from DO derivatization, *i.e.*, $\Delta DO(20)$ and $\Delta DO(3,20)$ values¹⁻³, were recorded. The averages were 282 ± 2 and $475 \pm 3 L_R$ units for steroids of the P17 α (20) group, and 196 ± 2 and 393 ± 2 units for the steroids of the P21(20) group, respectively. Obtained as a difference between average $\Delta DO(3,20)$ and $\Delta DO(20)$ values^{2,3}, the $\Delta DO(3)$ values were 193 and 197 for groups P17 α (20) and P21(20), respectively.

Decomposition of $17\alpha 21(20)$ -steroids prevented a direct determination of ΔDO values. However, the formation of thermally stable dioxolone derivatives was observed: for example, in the case of $5\beta P17\alpha 21(3.20)$, the DO(3) and DO(3,20) derivatives were obtained in equal amounts and the following L_R values were recorded: $5\beta P17\alpha 21(20)DO(3)$: 3550 and $5\beta P17\alpha 21DO(3,20)$: 3785. Hence the $\Delta DO(20)$ value, 235, was obtained by difference. Identification of these derivatives was obtained by RD reduction (2 h) of the reaction mixture which yielded the unaffected DO(3,20) derivative easily separable by TLC from more polar 20β - and 20α -reduction products of the DO(3) dioxolone. Isolated TLC fractions were hydrolyzed yielding the original product from the DO(3,20) derivative and $5\beta P17\alpha 20\beta(3)$ and $5\beta P17\alpha 20\alpha(3)$ from the reduced DO(3) derivative. The $\Delta DO(3)$ values of the 20β and 20α compounds were 197 and 200, respectively.

Evidently, the specificity of $\triangle DO$ values in the presence of other functional groups¹⁻³, and consequently, their usefulness in steroid identification¹⁻³ were confirmed by these data.

Enol acetate. Aside from unreacted P(20)-steroid, or its acetate when a 3α or 3β -hydroxyl group was present, two major products were invariably obtained (cf. Diagrams 1-3), *i.e.*, the two conformational isomeric enol acetates I and II (cf. below) in approximately 3/2 ratio, with enol II having the longest retention time. The L_R shift calculated from the L_R value of the initial material or, when a 3α - or 3β hydroxyl group was present, of its acetate, was consistently $177 \pm 1 L_R$ units for enol II. The L_R shift corresponding to enol I was 139 ± 1 for 5β P steroids, and 145 ± 2 units for all others. These rules also applied to products from 5β P(3,20) and

Reaction		A 55P(20) 221 (2346)					B 52P(20) 242 (2384)	
Ac.O	21		49	30	22		51	27
(PTSA)	53P(23)		I	n	5crF(23)		1	п
	221 (2346)		203 (2484)	333 (2522)	242 (2384)		338 (1519)	263 (2560)
AcO ₁ H then	29		80		25		75	
OH	53P(20)		5)P17a(20)		5cP(20)		5aP17a(20)	
	221 (2346)		317 (2501)		242 (2384)		350 (2544)	
RD	15	3	<u>ы</u>	23	19	s	50	25
(2 <u>b</u>)	5.F20#	SJP20c	32F17a203	53P17a20a	5aP20.	5aP20a	5aP17a205	5aP17a20a
	250 (2463)	311 (2493)	408 (2528)	463 (2666)	317 (2502)	238 (2529)	475 (2677)	503 (2702)

Diagram 1. Synthesis of $5\beta P17\alpha(20)$ (A) and $5\alpha P17\alpha(20)$ (B). Differences in L_R values from starting material to compounds I and II in the first step are 138 and 176 (sequence A) and 139 and 178 (sequence B), respectively.

Reaction		A 53234(20) 435 (2638)					B 52P3a(20) 455 (2658)	
Ac:O	20		50	30	19		45	33
(PTSA)	53P34(20) (acetate)		ĩ	π	5dP32(20) (scetate)		I	н
	546 (2737)		753 (2876)	812 (1915)	569 (2755)		783 (2594)	85 + (2931)
AcO, H then	20		80		17		83	
OH	52P32(20)		53P3217e(20)		53P3a(20)		56PCa17a (20)	
	435 (2638)		607 (2783)		453 (2658)		618 (2791)	
RD (2 b)	17 53P33203 566 (2753)	3 52PC#20a 606 (2752)	54 53P33172203 837 (2923)		15 5,3P3≃203 585 (2767)	2 52P3a20a 634 (2502)	55 5,2P3:217:20,3 853 (2931)	27 5;P3±17±203 939 (2973)

Diagram 2. Synthesis of $5\beta P3\beta 17\alpha(20)$ (A) and $5\beta P3\alpha 17\alpha(20)$ (B). The acetate of the starting material produced in the first step differs in L_R value from enol acetates I and II by 139 and 178 units in sequence A, and 139 and 176 units in sequence B, respectively. Increases in L_R value resulting from acetylation of the starting material are 99 and 98 units, respectively.

 $5\alpha P(3,20)$. The L_R shift due to acetylation of 3α or 3β was 73 ± 1 units for $5\beta P$ -steroids (Diagram 2), and 99 ± 1 units for $5\alpha P$ - or $\Delta 5P$ -compound (Diagram 3).

Because P17 α (20)-steroids (cf. Diagrams 1-3) were obtained in the expected yield from compounds I and II, these were probably the two isomeric enol acetates predicted from Dreiding models. In these models, the 13, 16, 17, 20, and 21 carbon atoms, and the 20-enol oxygen are coplanar, and the C21-methyl group is either *cis* or *trans* in relation to C-16. Presumably, the most compact (lowest energy) isomer was that corresponding to the lowest retention time and highest yield, *i.e.*, compound I. The L_R differences observed were not very large, nor clearly predictable from the models.

In any event, the predictability of the L_R shifts for the twin peaks of enol acetates makes this simple reaction valuable for the identification of P(20)-steroids.

Conversion of enol acetates to 17α -hydroxy(20)-steroids. Treatment of enol acetate mixtures with peracetic acid, followed by saponification of all acetyl groups

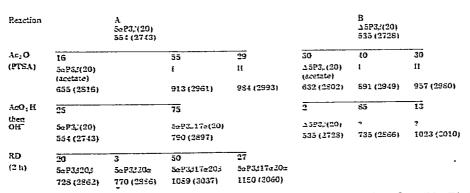


Diagram 3. Synthesis of $5\alpha P3\beta I7\alpha(20)$ (A). Attempted synthesis of $45P3\beta I7\alpha(20)$ (B). The L_R value of the acetate of the starting material in the first step and that of compounds I and II are: in sequence A, 145 and 177; in sequence B, 147 and 178 L_R units, respectively. Increases in L_R value resulting from acetylation of the starting material are 73 and 74 units, respectively. Final products in sequence B $^\circ$ e discussed in the text.

Group		(20)	20/1	201c	17a(20µ)	17020/5	I7a20a	21(20)	120/02	20a21	17a20 \$21	17a20a21
	G _n	234	353.5	380	389	530	554	589	681	638	836	815
(20)	234	, ,			155**	1		355**		: 1	1	1
20/1	353.5			26.5**	(1+C1)	176.5**		(rer)	327.5***		482.5	
20а	380		26.5**	(4,7)		(C/1)	. 1/4		(975)	278***	(484)	435
17a(2u)	389	155"*	(47)				(1/4)	2001		(280)		(435)
17a20/J	530	(+c1)	176.5"				24 66	(661)	1514		306***	
17a20a	554		(c/ 1)	174"		2449	(47)		(fc1)	101	(309)	261
21(20)	589	355""		(1,1,1)	2001	(4.2)				. (001)		(102)
20/121	681	(rcc)	327.5***		(661)	151				23 19	155.	
20a21	658		(976)	278"*"		(661)	104 0		23 **	(24)	(156)	156"
17a20/121	836		482.5	(097)		306""	(1/10)		(24) 155"			(155) 21 ⁴¹
17a20a21	815		(404)	435 (435)		(anc)	261*** (261)		(oc1)	156°* (155)	21 W (25)	(22)

listed in row 2 and column 2. The G_R values were taken from footnote^{*} in Tables III-XIII. AG_R values for 5aP3 β compounds were obtained as $AG_R(a,b) =$ $G_{R}(a) - G_{R}(b)$ with $G_{R}(a) > G_{R}(b)$ where $G_{R}(a)$ and $G_{R}(b)$ are G_{R} values of $5 \alpha P 3\beta$ compounds taken from row X, column 5 in Tables III-XIII. *** Contribution of 17a to L_n value of 17a(20), 17a20 β , or 17a20 α compound.

⁶ Difference between contributions of 17α and 21-OII.

TABLE XIV

172

(Diagrams 1-3) yielded the expected P17 α (20)-steroids as major products besides unmodified initial P(20)-compound, except in the case of Δ 5P3 β (20) (Diagram 3) and 3-keto steroids (not shown): Although normal enol acetates were produced in these cases (cf. above), the final products had abnormal retention times. The identity of normal products of these reactions (Diagrams 1-3) were confirmed by their known retention times (Tables III and IV) and that of their RD reduction products (Tables IV, V, VII, and VIII).

OX. Oxidation by CrO₃ under conditions described in ref. 1 left steroids of group P17 α (20) largely intact. Aside from unreacted starting material, insignificant amounts of $5\alpha A3\beta(17)$ and $5\alpha A(3,17)$ were observed by GLC analysis of oxidation products of $5\alpha A3\beta 17\alpha(20)$, for example.

P21(20)-steroids were completely modified. However, the only peaks observed in the chromatograms corresponded to about 3% of the original material converted to the 17-keto androstane. The main oxidation products, presumably the 20-carboxylic acids, were thermally unstable.

Partial oxidative degradation of the dihydroxyacetone side-chain was observed with P17 α -21(20)-steroids. Thus 24% conversion to 5 β A(3,17) was obtained with 5 β P17 α 21(3,20). The thermally unstable, unconverted material would not appear in the chromatograms.

These effects were obviously similar to those discussed in ref. 6 obtained with other oxidants.

WK. The effects of WK reagents on $P17\alpha(20)$ -, P21(20)-, and $P17\alpha21(20)$ steroids were similar in one respect only when observed by GLC: Neither a product corresponding to the simple removal of (20), nor unreacted material could be detected in substantial amounts.

With P17 α (20)-steroids, the reaction products arose from the removal of the pregnane side-chain except for minor amounts of fully reduced starting material. With $5\beta P3\beta 17\alpha$ (20), for example, the main products were $5\beta A3\beta 17\alpha$, $5\beta A3\beta$ (17), $5\beta A3\beta 17\beta$, and a compound tentatively identified as ± 16 , $5\beta A3\beta 17\beta$. Conversion to $5\beta P3\beta 17\alpha$ was 3% only.

Steroids of group P21(20) kept the pregnane side-chain but lost the 21-hydroxyl group. Products obtained from 5α P21(3,20), for example, were: 5α P, 28.5%; 5α P(20), 27.5%; 5α P20 β , 29%; 5α P20 α , 9.6%: 5α P3 β 20 β , 3.6%; and 5α P3 β 20 α , 1.8%. No peak corresponded to 5α P21. Not surprisingly, the products of 5β P3 α 21(20) were 5β P3 α , 5β P3 α 20 β , and 5β P3 α 20 α . Again, no 5β P3 α 21 was formed.

TMS. A comparison of retention times for derivatized and non-derivatized P17 $\alpha(20)$ -steroids showed that derivatization of 17 α , in 5 β P17 $\alpha(3,20)$ for example, decreased the retention time. Peaks of derivatized or non-derivatized P17 $\alpha(20)$ steroids were fairly symmetrical although unusually broad-based, having about 1.7 times the expected width. The TMS derivatives of the 20 α - and 20 β -reduction products had normal peaks.

Steroids which featured the 21-hydroxyl group decomposed in the GLC chromatograph unless derivatized; those featuring the dihydroxyacetone side-chain decomposed as derivatives: If enough material was injected, *e.g.*, 200 ng, a broad shallow elevation of the base line would result with a few very broad peaks dominating this background; the total area represented only a fraction of the original material; there was no significant response with 20 ng. However, even low levels of the TMS

derivatives of the 20 α - and 20 β -reduction products (Tables I, XII, and XIII) gave normal GLC peaks.

HY. Hydrolysis' of TMS or dioxolone derivatives was straightforward.

 G_R and ΔG_R data (see Table XIV). All P(20) steroids (Table III) and all steroids featuring 20 α (Tables V, VIII, XI, and XIII) were G_R -normal. G_R -oddity affected all 5β P(3)- and 5β P3 α -steroids featuring 20 β (Tables IV, VII, X, and XII), and 5β P3 α steroids featuring (20) (Tables VI and IX). In addition, 5β P3 β -steroids featuring 17 α were G_R -odd steroids (Tables VI, VII, and XII) unless they featured 20 α also. The 15 cases of G_R -oddity found among 121 steroids were much fewer than those previously observed with 11-substituted steroids¹⁻³.

The L_R values of all G_R -normal steroids were readily calculated by adding M_R , taken from Table I. to the G_R value of the corresponding group. Most calculated values listed in Tables III-XIII were obtained in this way. Calculated and observed values differed but little even when the G_R values of $5\alpha P3\beta$ -steroids were used instead. Fortunately, the $5\alpha P3\beta$ -steroids were either commercially available or readily prepared by RD reduction (Table II). Errors arising from this convenient procedure reflected small deviations of the G_R values of $5\alpha P3\beta$ -steroids from that of the corresponding groups.

 G_R values of $5\alpha P3\beta$ -steroids were also used to determine ΔG_R values shown in parentheses in Table XIV. Obviously, these did not differ considerably from ΔG_R values obtained as differences of G_R values of group pairs.

As indicated in footnotes^{**} and ^{***} of Table XIV, the relevant ΔG_R values represented contributions to L_R values of functional groups 17 α and 21-OH. These contributions varied, often markedly, with the presence of other functional groups in the molecule. The contribution of 21-OH, for example, was 355, 327, 278. 306, and 261 L_R units for P21(20), P20 β 21, P20 α 21, P17 α 20 β 21, and P17 α 20 α 21, respectively.

With $\varDelta G_R$ values shown in Table XIV, any L_R value listed in Tables III-XIII could be calculated from the L_R value of any *M*-corresponding steroid. Table XII in ref. 3 exemplified this type of operation and demonstrated the precision attainable by the $\varDelta G_R$ method of calculation. Its application to the present case again demonstrated its reliability, versatility, and practical value in steroid identification.

As previously demonstrated¹⁻³, the ΔG_R method of calculation applied equally well to G_R -normal and G_R -odd steroids unless either the calculated L_R value, or the reference L_R value was affected by excess oddity. The few cases reported in previous communications were $5\beta A3\alpha 11\beta 17\beta^1$, $5\beta P3\alpha 11\beta 20\beta^2$, and $5\beta A3\alpha 11\alpha 17\beta^3$. Remarkably, cases found in the present data: $5\beta P3\alpha 17\alpha 20\beta$, $5\beta P3\alpha 20\beta 21$, $5\beta P3\alpha 17\alpha 20\beta 21$, $5\beta P3\alpha 17\alpha (20)$, and $5\beta P3\alpha 21 (20)$, involved $5\beta P3\alpha$ -steroids also.

The reversal of peak position for 20c- and 20β -isomars due to the presence of a 21-hydroxyl group (cf. above) on the one hand, and excess oddity in $5\beta P3\alpha 20\beta 21$ and $5\beta P3\alpha 17\alpha 20\beta 21$, on the other hand, explain the exceptional closeness of L_R values observed for the 20a- and 20β -isomers in both cases (compare values in Tables X and XI, and XII and XIII, respectively). As shown in Table XIV, the normal difference was about 24 L_R units in absolute value.

ACKNOWLEDGEMENTS

The technical assistance of Mr. R. D. Cochrane was highly appreciated. We

are very grateful to Dr. D. F. Johnson, National Institute of Health, Bethesda, Md., U.S.A., and to Professor W. Klyne, and Dr. D. N. Kirk of Westfield College, London, Great Britain, for numerous samples from the Steroid Reference Collection.

REFERENCES

- I F. A. Vandenheuvel, J. Chromatogr., 96 (1974) 47.
- 2 F. A. Vandenheuvel, J. Chromatogr., 103 (1975) 113.
- 3 F. A. Vandenheuvel, J. Chromatogr., 105 (1975) 359.
- 4 T. H. Kritchevsky and T. F. Gallagher, J. Biol. Chem., 179 (1949) 507.
- 5 P. Oliveto and E. B. Hershberg, J. Amer. Chem. Soc., 76 (1954) 5167.
- 6 C. J. W. Brooks and J. K. Norymberski, Biochem. J., 55 (1953) 371.